Zum Inhalt springen

Upper moderate deviation probabilities for the maximum of a branching random walk

Oberseminar Mainz

Datum: 25.11.2025

Zeit: 14:15–16:15 Uhr

In 2013, Elie Aı̈dékon obtained the convergence in distribution, as time n goes to infinity, of the maximum of a supercritical branching random walk, once recentered by an explicit function m(n). More recently, Lianghui Luo gave an asymptotic equivalent for the upper large deviation probabilities of this maximum. In this talk, I will present a joint work with Lianghui Luo in which we study an intermediate regime. We obtain an asymptotic equivalent for the probability that the maximum arrives at distance x(n) above m(n), where 1 << x(n) = O(sqrt(n)).

Referent

Louis Chataignier, Université Toulouse III

Ort

Uni Mainz, Institut für Mathematik, Raum 05-136
Johannes-Gutenberg-Universität Mainz, Institut für Mathematik, Staudingerweg 9, 55128 Mainz, Deutschland

Veranstalter

Johannes Gutenberg-Universität Mainz

Kooperationspartner

Technische Universität Darmstadt, Goethe-Universität Frankfurt am Main

Für diese Veranstaltung ist keine Anmeldung erforderlich. PDF- Link