Zum Inhalt springen

Mathematisches Kolloquium TU Darmstadt

Andere Veranstaltungen

On the block counting process and the fixation line of the Bolthausen-Sznitman coalescent

Datum: 03.06.2020

Zeit: 17:15–18:15 Uhr

The first part of the talk introduces to the theory of exchangeable
coalescents, a fundamental class of partition-valued Markov processes
enjoying a rich probabilistic structure and having important applications
in population genetics.

The second part of the talk focuses on the Bolthausen--Sznitman coalescent.
The block counting process and the fixation line of the Bolthausen-Sznitman
coalescent are analyzed. It is shown that these processes, properly scaled,
converge in the Skorohod topology to the Mittag--Leffler process and to
Neveu's continuous-state branching process respectively as the initial state
tends to infinity. Strong relations to Siegmund duality, Mehler semigroups
and self-decomposability are pointed out. Extensions to exchangeable
coalescents are discussed.

Referent

Martin Möhle, Universität Tübingen

Ort

TU Darmstadt, S2|08 171 (Uhrturm-Hörsaal)
Hochschulstraße 4, 64298 Darmstadt

Veranstalter

Technische Universität Darmstadt

Fachbereich Mathematik - Stochastik
Schlossgartenstraße 7
64289 Darmstadt
Telefon: +49 6151 16-23380
Telefax: +49 6151 16-23381
info(at)stochastik-rhein-mainde

Für diese Veranstaltung ist keine Anmeldung erforderlich. PDF- Link