The truncation problem for long-range percolation
Oberseminar Darmstadt
Datum: 21.08.2025
Zeit: 16:15–17:45 Uhr
In long-range percolation on the integer lattice, for each pair of points $ \{ x, y \}$, there is an open edge between these points with probability depending on the Euclidean distance between the points, independent of all other edges. When are the long edges necessary for the existence of an infinite cluster? The truncation problem asks whether one can remove all long enough edges while still retaining an infinite open cluster. We discuss this question in the non-summable regime in dimensions $d\geq 3$. Here we show that the truncation problem has an affirmative answer.
Referent
- Johannes Bäumler, UCLA, USA
Ort
- TU Darmstadt S2|15 Raum 401
- Schlossgartenstr. 7, 64289 Darmstadt
Veranstalter
- Technische Universität Darmstadt
Fachbereich Mathematik - Stochastik
Schlossgartenstraße 7
64289 Darmstadt
Telefon: +49 6151 16-23380
Telefax: +49 6151 16-23381
info(at)stochastik-rhein-mainde
Kooperationspartner
Goethe-Universität Frankfurt am Main, Johannes Gutenberg-Universität Mainz, Justus-Liebig-Universität Gießen