Zum Inhalt springen

Random walk on Galton-Watson trees

Oberseminar Darmstadt

Datum: 15.01.2026

Zeit: 16:15–17:45 Uhr

We investigate simple random walks on infinite (Bienaymé–) Galton–Watson trees. The main focus is on the annealed return probability for these random walks. We prove that for all offspring distributions with finite first moment, the return probability decays subexponentially with power $t^{1/3}$ in the exponent, which is optimal whenever the offspring distribution does not forbid leaves or linear pieces in the tree. This complements the corresponding lower bound provided by Piau (1998). In the special case of a Poissonian offspring distribution, we apply this upper bound to deduce a Lifshits tail for the eigenvalue density of the graph Laplacian on supercritical sparse Erdös–Rényi random graphs.

Joint work with Peter Müller and Sara Terveer. 

Referent

Markus Heydenreich, Universität Augsburg

Ort

TU Darmstadt S2|15 Raum 401
Schlossgartenstr. 7, 64289 Darmstadt

Veranstalter

Technische Universität Darmstadt

Fachbereich Mathematik - Stochastik
Schlossgartenstraße 7
64289 Darmstadt
Telefon: +49 6151 16-23380
Telefax: +49 6151 16-23381
info(at)stochastik-rhein-mainde


Kooperationspartner

Goethe-Universität Frankfurt am Main, Johannes Gutenberg-Universität Mainz, Justus-Liebig-Universität Gießen

Für diese Veranstaltung ist keine Anmeldung erforderlich. PDF- Link