Random walk on Galton-Watson trees
Oberseminar Darmstadt
Datum: 15.01.2026
Zeit: 16:15–17:45 Uhr
We investigate simple random walks on infinite (Bienaymé–) Galton–Watson trees. The main focus is on the annealed return probability for these random walks. We prove that for all offspring distributions with finite first moment, the return probability decays subexponentially with power $t^{1/3}$ in the exponent, which is optimal whenever the offspring distribution does not forbid leaves or linear pieces in the tree. This complements the corresponding lower bound provided by Piau (1998). In the special case of a Poissonian offspring distribution, we apply this upper bound to deduce a Lifshits tail for the eigenvalue density of the graph Laplacian on supercritical sparse Erdös–Rényi random graphs.
Joint work with Peter Müller and Sara Terveer.
Referent
- Markus Heydenreich, Universität Augsburg
Ort
- TU Darmstadt S2|15 Raum 401
- Schlossgartenstr. 7, 64289 Darmstadt
Veranstalter
- Technische Universität Darmstadt
Fachbereich Mathematik - Stochastik
Schlossgartenstraße 7
64289 Darmstadt
Telefon: +49 6151 16-23380
Telefax: +49 6151 16-23381
info(at)stochastik-rhein-mainde
Kooperationspartner
Goethe-Universität Frankfurt am Main, Johannes Gutenberg-Universität Mainz, Justus-Liebig-Universität Gießen