Skip navigation

Upper moderate deviation probabilities for the maximum of a branching random walk

Oberseminar Mainz

Date: 25.11.2025

Time: 14:15–16:15 h

In 2013, Elie Aı̈dékon obtained the convergence in distribution, as time n goes to infinity, of the maximum of a supercritical branching random walk, once recentered by an explicit function m(n). More recently, Lianghui Luo gave an asymptotic equivalent for the upper large deviation probabilities of this maximum. In this talk, I will present a joint work with Lianghui Luo in which we study an intermediate regime. We obtain an asymptotic equivalent for the probability that the maximum arrives at distance x(n) above m(n), where 1 << x(n) = O(sqrt(n)).

Speaker

Louis Chataignier, Université Toulouse III

Place

Uni Mainz, Institut für Mathematik, Raum 05-136
Johannes-Gutenberg-Universität Mainz, Institut für Mathematik, Staudingerweg 9, 55128 Mainz, Deutschland

Organizers

Johannes Gutenberg-Universität Mainz

Organizing partners

Technische Universität Darmstadt, Goethe-Universität Frankfurt am Main

For this event, no registration is necessary. PDF- Link