Upper moderate deviation probabilities for the maximum of a branching random walk
Oberseminar Mainz
Date: 25.11.2025
Time: 14:15–16:15 h
In 2013, Elie Aı̈dékon obtained the convergence in distribution, as time n goes to infinity, of the maximum of a supercritical branching random walk, once recentered by an explicit function m(n). More recently, Lianghui Luo gave an asymptotic equivalent for the upper large deviation probabilities of this maximum. In this talk, I will present a joint work with Lianghui Luo in which we study an intermediate regime. We obtain an asymptotic equivalent for the probability that the maximum arrives at distance x(n) above m(n), where 1 << x(n) = O(sqrt(n)).
Speaker
- Louis Chataignier, Université Toulouse III
Place
- Uni Mainz, Institut für Mathematik, Raum 05-136
- Johannes-Gutenberg-Universität Mainz, Institut für Mathematik, Staudingerweg 9, 55128 Mainz, Deutschland
Organizers
- Johannes Gutenberg-Universität Mainz
Organizing partners
Technische Universität Darmstadt, Goethe-Universität Frankfurt am Main