Skip navigation

Events

02.02.2024  Rhein-Main-Kolloquium

Peter Mörters (Universität Köln)
Alessandra Bianchi (Università degli Studi di Padova)

RMKS Frankfurt/Main 02.02.2024

Read more

16.11.2018  Rhein-Main-Kolloquium

Alexander Schnurr (Universität Siegen)
Markus Bibinger (Universität Marburg)

RMK Mainz

Read more

03.02.2023  Rhein-Main-Kolloquium

Amaury Lambert (Collège de France und École Normale Supérieure, Paris)
Emmanuel Schertzer (Universität Wien)

RMKS Mainz 03.02.2023

Read more

27.01.2017  Rhein-Main-Kolloquium

Amine Asselah (Université Paris-Est)
Yvan Velenik (Universität Genf)

RMK Frankfurt Winter 2016/17

Read more

12.07.2024  Rhein-Main-Kolloquium

Nicolas Champagnat (Nancy)
Anita Winter (Duisburg-Essen)

RMK Frankfurt

The grapheme-valued Wright-Fisher Diffusion with mutation --- In Athreya, den Hollander and Röllin (2021) models from population genetics were used to de fine stochastic dynamics in the space of graphons that arise as continuum limits of dense graph sequencess. In this talk we extend this framework to a model with mutation. In particular, we define a finite graph valued Markov chain that can be associated with the infinite many alleles model, and establish a diffusion limit as the number of vertices goes to infinity. For that we encode finite graphs as graphemes. Graphems are those graphons that can be represented as a triple consisting of a topological vertex space, an adjacency matrix and a sampling measure. The space of graphons is equipped with convergence of sample subgraph densities. (joint work with Andreas Greven, Frank den Hollander and Anton Klimovsky) -------------------------------------------------------------------- Scaling limits of individual-based models in adaptive dynamics and local extinction of populations (N. Champagnat) --- Starting from an individual-based birth-death-mutation-selection model of adaptive dynamics with three scaling parameters (population size, mutation rate, mutation steps size), we will describe several scaling limits that can be applied to this model to obtain macroscopic models of different natures (PDE, Hamilton-Jacobi equation, stochastic adaptive walks, canonical equation of adaptive dynamics), which allow to characterize the long-term evolution of the population. Motivated by biological criticisms on the time-scale of evolution and the absence of local extinctions in the obtained macroscopic models, we propose new parameter scalings under which we can characterize the evolution of population sizes of the order of $K^\beta$, where $K$ is the order of magnitude of the total population size, and which allows for local extinction of subpopulations. This presentation will gather results obtained with several collaborators: Régis Ferrière, Sylvie Méléard, Amaury Lambert, Viet Chi Tran, Sepideh Mirrahimi, Vincent Hass. Read more

11.06.2021  Rhein-Main-Kolloquium

Gaultier Lambert (Universität Zürich)
Christian Brennecke (Harvard University)

RMK Frankfurt - ONLINE

Read more

07.07.2023  Rhein-Main-Kolloquium

Christoph Czichowsky (London School of Economics and Political Science)
David Prömel (Universität Mannheim)

RMKS Frankfurt 7. Juli 2023

Read more

31.01.2020  Rhein-Main-Kolloquium

Sabine Jansen (LMU München)
Dimitrios Tsagkarogiannis (Università degli Studi dell´Aquila)

RMK Darmstadt - 31.01.2020

Read more

07.12.2018  Rhein-Main-Kolloquium

Dr. Piotr Miłoś (Universität Warschau)
Jakob Björnberg (Universität Göteborg)

RMK Darmstadt

Read more

09.02.2018  Rhein-Main-Kolloquium

Elisabetta Candellero (University Warwick)
Francesco Caravenna (University Milano-Bicocca)

Rhein-Main-Kolloquium

Read more

29.01.2021  Rhein-Main-Kolloquium

Gábor Lugosi (Department of Economics, Pompeu Fabra University Barcelona)
Po-Ling Loh (University of Cambridge)

RMK Frankfurt - ONLINE

Read more

Displaying results 1 to 20 out of 40

Page 1

Page 2

Next >